If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-10d+5=0
a = 1; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·1·5
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{5}}{2*1}=\frac{10-4\sqrt{5}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{5}}{2*1}=\frac{10+4\sqrt{5}}{2} $
| -5(2t-4)+8t=5t-7 | | 4(v+4)-6v=4 | | 7x-5=-2x+1+9x-5 | | 20=7y-12 | | 4(2x+8)=-44+4 | | 4a^2+2a+2=5 | | 3x2+9x-38=0 | | 2+6x=-72 | | 4(2x+5)=-35+7 | | -3x/8=6 | | 0.5−0.2x=0.3x+0.2 | | -7-x/3=-4 | | 40(x+40)=120 | | -2y+4y+1=-6(y^2) | | -2m+12=-8(m-6) | | 10=2a+1 | | 17+3=x | | 7.6xx=4.6 | | 40(x+40)=40•3 | | -2y+4y+1=-6y^2 | | 0.5x−2.5=1.5 | | 42=z+9 | | 8x-15+3x=40 | | 3x-9=1+3x | | -132=2(2+7x)+3x | | d/20+960+d/12=1140 | | 2.3x+4.2=0.2 | | y/6=-39 | | v+(-3)=11 | | 2x-1=17-× | | 982.5(x+5)=57.1(x-86) | | 4j-20=-60 |